Modeling covariance matrices via partial autocorrelations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling covariance matrices via partial autocorrelations

We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stat...

متن کامل

Partial Estimation of Covariance Matrices

A classical approach to accurately estimating the covariance matrix Σ of a p-variate normal distribution is to draw a sample of size n > p and form a sample covariance matrix. However, many modern applications operate with much smaller sample sizes, thus calling for estimation guarantees in the regime n p. We show that a sample of size n = O(m log p) is sufficient to accurately estimate in oper...

متن کامل

Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances

Many parameters and positive-definiteness are two major obstacles in estimating and modelling a correlation matrix for longitudinal data. In addition, when longitudinal data is incomplete, incorrectly modelling the correlation matrix often results in bias in estimating mean regression parameters. In this paper, we introduce a flexible and parsimonious class of regression models for a covariance...

متن کامل

Improving Bilingual Projections via Sparse Covariance Matrices

Mapping documents into an interlingual representation can help bridge the language barrier of cross-lingual corpora. Many existing approaches are based on word co-occurrences extracted from aligned training data, represented as a covariance matrix. In theory, such a covariance matrix should represent semantic equivalence, and should be highly sparse. Unfortunately, the presence of noise leads t...

متن کامل

Sparsity Inducing Prior Distributions for Correlation Matrices through the Partial Autocorrelations

Modeling a correlation matrix R can be a difficult statistical task due to both the positive definite and the unit diagonal constraints. Because the number of parameters increases quadratically in the dimension, it is often useful to consider a sparse parameterization. We introduce a pair of prior distributions on the set of correlation matrices for longitudinal data through the partial autocor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2009

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2009.04.015